
ISPyB Web Services

Adapting for SynchLink Mobile App

Contents

• Introduction to the task and SynchLink

• Documentation via Swagger

• Changes required:

– CAS authentication

– Endpoints

• Summary

Sessions Data collections Data collection

results

Auto processing

results

SynchLink

Crystal snapshot Diffraction image Synchrotron status

SynchLink

SynchLink
iPad iPhone

Introduction

• SynchLink was integrated with
“GenericWebServices”

• Java software stack using apache tomcat

• Only used by SynchLink

• SQL query built from XML message
payload

• Supports file transfer for crystal
snapshots etc.

• Task:
– to migrate to use ISPyB Java web services

– Gain experience adding/modifying endpoints

ISPyB WS

ISPyB DB Cluster
(MariaDB)

Mobile User
(SynchLink)

Challenges

• Documentation
– Use of web service calls contained in abstracted

classes, no clear mapping between page and call

• Documentation
– Generic Web services means decoding actual SQL

query used non-trivial

• Documentation
– API documentation for endpoints in Java ISPyB

web services disabled/commented out

Swagger => OpenAPI
• A specification for documenting REST APIs

• Inline documentation through code
annotations including input parameters and
response codes

• Configured to either generate a spec file or
self host a UI to test queries

• The existing “authorize” endpoint generates
a token that can be input when clicking the
“Authorize” button shown. All padlocked
endpoints will then be usable if the
credentials input are valid.

• Configured in the “RestApplication.java”
class in the ISPyB codebase (were
commented out?)

• Requires the “io.swagger > swagger.jaxrs”
maven dependency within the projects
pom.xml file in order for the annotations to
be used within the codebase.

Swagger UI
• When an endpoint in the list is clicked, it is shown with its description and any responses it can

return (HTTP error codes etc).

• Selecting “Try it out” will display a form with parameters required before a user can “Execute” the
call.

• The response from the server is then shown beneath the Execute button with it’s HTTP code and the
response value along with the URL that was called.

Swagger Annotations
Inline annotations can become
rather large and unwieldy.

The tags value of the @ApiOperation
allows you to group the API
endpoints.

The @GET, @Path,
@Produces and
@PathParam
annotations come
from Jax-RS.

The response value will
render an example of the
object and it’s parameters
at the bottom of the
Swagger UI page

Authentication

Created a new DLSLoginModule class that connects to a Central Authentication
Service (CAS)

Calling “/authenticate” with the “site” parameter set to DLS, triggers the DLS case
statement.

Assuming the use is authenticated, the AuthenticationRestWebService method
generates a token that is stored in the database, within the Login table.

Appears that the token is random and does not contain any information encoded (e.g.
user name). The Login table provides the association to the user.

Endpoints

When an API endpoint is called the following interactions occur:

• The API token in the header is checked first to determine whether the user is authorised to
use the endpoint.

• The relevant data is then retrieved (if possible) using the existing ISPyB service and VO classes
that were already in place. We have tried to avoid modifying any code interacting with the
database as much as possible.

• The VO classes contain a lot more information than required for the purposes of the Diamond
endpoints, so we have created specialised DTO (data transfer objects) classes.

• The DTO classes act as the specialised representation of the data required for our purposes
– When the data is retrieved from the database, it is passed into a conversion method, which simply

takes the data required from the VO instance and places it into a DTO instance using each classes
getter/setter methods.

• The data is then placed into a Response object and returned via the method with a relevant
HTTP code.

Endpoints...
A list of the endpoints implemented for the iOS app are shown below:
These map onto the existing requirements of the application

Swagger
grouping

URL

Authentication* /authenticate

Energy Scan /sessions/{id}/energy-scans

Session /sessions

XFE Fluorescence
Spectrum

/sessions/{id}/fluorescence-spectrum

Data Collection /sessions/{id}/data-collections

Data Collection /sessions/{id}/data-collections/details

Screening /data-collections/{dcId}/screening-output-lattice/{solId}

Screening /data-collections/{dcId}/screening-strategy-
wedge/{sswId}

Screening /data-collections/{dcId}/screening-strategy/{soId}

Screening /data-collections/{dcId}/screening-comments

Proposal /proposals/{id}

Swagger
grouping

URL

Auto
Processing

/auto-proc-integrations/{id}

Auto
Processing

/auto-proc-scalings/{id}/mx-mr-runs

Auto
Processing

/auto-proc-scalings/{id}/statistics

Auto
Processing

/auto-proc/{id}

Auto
Processing

/data-collections/{id}/auto-processing-results

Beam Line
Sample

/beamline-samples/{id}

Crystal
Snapshot

/data-collections/{dcId}/crystal-snapshot-paths

Crystal
Snapshot

/data-collections/{dcId}/diffraction-images

Summary

• We have designed new endpoints within ISPyB to
support SynchLink

• Testing with an updated SynchLink is still needed

• Should we merge them into existing ISPyB classes?

• Should we create new package to contain DLS web
service classes?

• Are there any plans to update the web services during
the shutdown?
– For example remove …/list, …/get from URLs?

– Guidance on use of SQL resource files vs SQL in code?

Questions?

Example

/{token}/proposal/{proposal}/session/sessionId/
{sessionId}/list

/sessions

